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Introduction
* Main Challenges: Low-field (LF) MRI * Objective: To enhancement low-field MRI * Solution: Decomposing the problem
holds promise for MRI techniques to new guality to high-field levels. into (1) Data-Prior (2) Data-Fidelity

heights that are affordable, portable, and
site-agnostic. However, it Is inevitably
constrained by low SNR and contrast,
posing challenges for practical diagnostic

research. Low field MRI ) High field MRI

sub-problems and solving in an
iterative framework united by Diffusion
Model [1] and Implicit Neural
Representations (INR) [2].

Methodology Results
Overview: We decompose the LF MRI enhancement problem into a m Experiments on simulated data
data-fidelity and a data-prior sub-problems. The data-prior sub-problem O et R LOHIBESC AN e DPS DiffDeuR

IS solved by reverse sampling using a pre-trained diffusion model, while
the data-fidelity sub-problem is solved by INR with embedded
degradation models and a strong continuity prior.

Solving Data-Prior o . i 2 ( t)
Sub-problem by Diffusion Model Xojt — &y ~ Xy O S\ Xy,
Xp —> | —> X1 X =2 X —> Xopp —=2> X;1—> X, 0 —> | —>Xg

Fig. 2: Qualitative results of methods in comparison on simulated LF MRIL.

Table. 1: Quantitative results of methods in comparison on simulated LF MRL
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Fig. 1: Overview of the proposed DiffDeuR. DiffDeuR (Owurs) 28.130+0.264 0.9146+0.004 0.0905+0.007

(a) Degradation Model: Inspired by the insights of [3], we approximate
the degradation model from HF MRI to LF MRI as a combination of
downsampling, blurring (Gaussian point spread function (PSF) blurring),
and noise addition as follow:

(b) Problem Formulation: For the challenging ill-posed inverse
problem of recovering HF MRI from LF MRI, we model the solution as a
regularized inverse problem as:
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then we decoupling the data fidelity and data prior terms using Half
Quadratic Splitting (HQS) and transform them to two distinct sub-
problems as follows:
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(c) Alternating Optimization: We solve the two sub-problems Fig. 4: Qualitative results of whole brain segmentation on real
. . . . . 2 .
alternately in an iterative framework. Specially: 0.2 TLF MRI with 3x3mm?~ resolution.

* Data-Prior Sub-problem: As it is essentially a Gaussian denoising
problem, we propose to use the diffusion model sampling with
Tweedie’s formula as the denoiser to solve it.
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This work proposes DiffDeuR, an unsupervised method that

* Data-Fidelity Sub-problem: Inspired by [4], we use a model-driven innovatively employs the HQS framework to combine the

INR framework to learn a continuous function that maps spatial
coordinates to intensities that simultaneously conform to both the
data prior manifold and the measurement manifold.

diffusion model with INR, leveraging the strengths of both to
tackle the challenging task of LF MRl enhancement.

The comprehensive evaluation on simulation and real datasets
validates the superior performance of our DiffDeuR model
compared with SOTA methods in LF MRl enhancement.
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